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Abstract, The predictability deals with the difficulty that can be assigned to a
time series in order to be forecasted by a model. In this work, the identification
of relations between predictability and time series structore is done by means of
two pattern recognition techniques: Multidimensional Scaling and Recurrence
Plots. The first technique allows the clustering of the time series by their
predictability degree that is associated with a set of time series parameters, the
second technique allows the visualization of the spatial and temperal dynamics
hidden in the structure of the time series. The results shows that the
predictability is related with the structural features of the time series through a
set of |basic structural patterns, these patterns show different kinds of
associations with groups of time series that possess a similar predictability.

1 Introduction

A time seties represents the behavior of an observable for a system from natural or
artificial origin [1, 21, the dynamics represented by a lime series have a richness of
structural patterns that can be studied with different techniques such as Fourier
Analysis, Principal Component Analysis, etc. [3]; the identification and analysis of
these patterns are basic steps towards a better understanding of the time series
dynamics. The time series dynamics is refated with the predictability, this is a
quantitative ¢stimation of the difficulty that implies to model and forecast such
dynamics [4, 5, 6, 7]. The identification of relations between predictability and
structure of time series is the main goai of the present work, this is done with the help
of two pattern recognition techniques: Multidimensional Scaling and Recurrence
Plots. The Section 2, explains the concept of predictability used in this work and the
way it is estimated. The Section 3, describes the fwo pattern recognition techniques
and their advantages. The Section 4, shows the experimental results and their
interpretation. Finally, the Section 3 presents the conclusions of this work.
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2 Predictability of Time Series

The predictability deals with the difficuity that can be assigned to a time series in
order to be forecasted by a model. Traditionally, this feature has been associated with
the forecast error, for example the root mean square error {(RMSE) or others
definitions reported in the literature [8, 9], these kind of measurements assume that
the predictability is due to the forecasting model and not to the time series
characteristics, others works consider that the predictability can be estimated with
only one feature of time series such as Lyapunov exponent Or some definitions of
information entropy (an illustrative example is showed in Section 4), based on the
hypothesis that with only one parameter there is enough information in order to
characterize the predictability [3, 6, 10].

In this work, the predictability was studied with a set of parameters that
characterize the time series from different points of view: Non Linear Dynamics,
Statistics, Fourier Analysis, Information Theory and Computation Theory. In this
way, a holistic estimation of the predictabiiity is achieved. The estimation of the
predictability is not explicit in nature, in the sense of a scalar value such as a forecast
error can provide, instead the Multidimensional Scaling was used in order to identify
groups of time series with similar predictability in an implicit way. The Table 1
shows a briel description of the fifteen parameters selected to estimate the
predictability. The parameters are classified by: its theoretical basis, the generic type
of the feature that is computed, the reach of the parameter, and the type of information
that it provides about the time series [11, 12, 13, 14, 15,16, 17, 181

3 Pattern Recognition Techniques

In this section the pattern recognition techniques used in this work are described and
its advantages high lined. The first technique is Multidimensiona! Scaling, it allows
the grouping of objects with similar features, in this case similar predictability
represented by the set of time series parameters, the second technique is Recurrence
Plots, it allows the visualization of patterns that represent the tempora! and spatial
correlation between the points that form a time series, enabling a better visualization
of the time series dynamics. Associating the information provided by these two
techniques, knowledge about the relations between the patterns of time series
dynamics and its predictability was extracted.

3.1 Multidimensional Sealing (MDS)
This is a method that represents similarity metrics between pairs of objects as

distances between points in a multidimensional space into one space of lower
dimension (2-D or 3-D). The graphical representation allows the observation and
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Fable 1. Description of parameters related with time series predictability.

Theoreti '
Parameter E’;:i:ai Feature Reach Type of Information
o, . L l H
Peart.o.n Statistics Statisticat Global Corre .atlon df:gree _betwccn
Correlation time series points
Hurst Statistics Statistical Global Trend
Exponent
Domminant Fouriet Temporal Global Signal frequency patterns
Frequency Analysis b £ quency p
L N i .
yapunov on Lmlear Topological § Global Forecast horizon
Exponent Dynamics
iati N i . . .
Cc‘)rre abon on Lm.ear Topological Local Locat spatial correlation
Dimension Dynamics
Capacity Non Linear ) o
- . . 1 1
Dimension Dynamics Spatial Laocal Self similarity degree
Fractal Non Linear . Local average dimension ina
. . : Spatial Local . .
Dimension Dynamics sphere of radius epsilon
E d . .
].“bEd .Ed Non i neat Topological | Global Degrees of freedom
Dimension Dynamics
Spatial ‘Non Linear Spatial Global Degree of non spatial and
Temporal . .
Dynasmics Temporal Local temporal correlation
Entropy
. . 7 ——
Recurrence Mot Lm.car Spatial Globa Periodicity and structure
Dynamics Temporal Local
. i tal i .
Determinism Non Lm_ear Spatia Giloba Degree of determinism
Dynamics Temporal Local
Shannon Information e Global | Information extracted from a
Probabilistic .
Entropy Theory Locat | measurcment into a system
Average {nformation [nformation contained in one
Mutual Probabilistic | Global | -variable for two instanis of
. Theory .
information time
Lempel-Ziv | Cemputation , Global § Structure an hierarchy in data
. Computational .
Complexity Theory Local sirings
i i Global . .
Pr(;tlgsmn CO?E:(:?% Compuiational Ll(?:; Computational complexity

exploration by the expe
discovery of dimensions th
The MDS takes as input in

vt of the data structure in search of hidden patterns and also the
at represent parameters of similarity [19].
formation a proximity matrix of the form,




46 E. Bautista-Thompson and J. Figueroa-Nazuno

5ll 612 e 6!:1 (1)
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Where # is the number of objects to be compared. Each element 5j!. is a distance
measurement (usually an Evclidean metric but not restricted to it} that represents the
proximity between the features of the abjects i and j. The goal is to adjust an initial
random distance matrix X € M where » is the number of objects (in this

fxm

particular case the number of time series) and m is the number of dimensions,

2)
X X e Xy ¢
X — x21 x22 xlm

'xn] xn2 xmn

Each value X; represents the coordinate of the i-th fime series. Now, the distance

between two time series i and j can be calculated, and a distance matrix D e M,

is obtained,

d, d, .. d, 3
D - d21 dzz d2n
dnl dnz HH

The solution must satisfy that there is a maximum correspondence between the
proximity matrix A and the distance matrix D. This is achieved by adjusting
iteratively the matrix X in the next way,

BX @

X o= e
2n

Where B has as elements,

~25, (5)
=—" ifi=j.
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(6)

B, fzzzj: it i

b!.f =0ifd; = 0 {7

. The optimal adjustment is achicved when a precision function called S-Stress
 reach a precision value determined a priori by the expert [19],

>(63-4) ®

S —Stress = —

: In particular, MDS was applied to a set of time series (the objects) represented by
. fifteen parameters {dimensions) that characterize each time series, these parameters as
- was mentioned earlier, are refated with the predictability of time series.

3.2 Recurrence Plots

The Recurrence Plots were first described by I P. Eckman, S. 0. Kamphorst and D.
Ruelle in 1987 [20]. This quaiitative (by means of the visualization of the plots) and
quantitative analysis (by means of some parameters derived from the plots), allows
the detection of hidden patterns and structural changes inside the time series data [16,
20, 21]. The basic idea that supports a Recurrence Plot, is that a time series is the
product of a dynamical process where the relevant variables interact, and that it is
possible to recover the information of such multivariate process from only one time
series [1, 2]. A Recurrence Plot represents an expansion of a time series in a
multidimensional space, in this space the dynamics of the time series is visualized
through the multiplication of the available information. In order to build this plot, a
reconstruction of the phase space is necessary, this is done with the embedding of the

“ time series, that consists of the identification of a dimension m that resembles closely

the original phase space dimension of the process that the time series represents, and
the building of a set of vectors that corresponds with the set of eriginal points that
formed the trajectory of states for the original process in the phase space. The vectors
have the form,

(1) = $G), x(i — d), x(i - 2d),..., x(i — (m Nd}. 9

Where i corresponds with the time index, m is the embedding dimension and dis a
time delay. As a result, a time series formed by a set of vectors is generated,

Y = (0, 7(2), y3)s y(N ~ (m = 1)d). (10)

Where N is the size of the original time series.
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Once the dynamics is reconstructed, a Recurrence Plot allows £0 show what vectors
in the phase space are closer or more separated between them. This is established with
an Euclidean distance between ail the pairs of vectors, and it is codified with a color
scale {e.z. a gray scale). Essentially, the Recurrence Plot is a color coding matrix,
where each input (7, j} corresponds with a distance between the vectors y(ij and y(j).
This distance is associated with a predefined color code that is displayed in the
position of temporal character (i, /), for example, a light gray color corresponds with a
smali distance between vectors, and a black color corresponds with a big distance
between vectors. A Recurrence Plot can be interpreted as a graphical representation of
a correlation integral. The advantage compared with such correiation is that a
Recurrence Plot preserves the temporal and spatial dependency between the points.
The interpretation of the information displayed by a plot, has a qualitative nature:
structured patterns are related with recurrent dynamics inside the time series and more
determinism, non structured patterns corresponds with a changing dynamics (non
necessarily random in nature) and less deferminism, also combinations of these
patterns can exist. '

4 Identification of the Structural Patterns and their Relations

The advantage of exploit a set of parameters and not just only one in the study of the
predictability is illustrated with the Figure 1, here the behavior of the Lyapunov
exponent for the thirty time series used in this work is showed. This exponent
estimates the rate of propagation of the forecast error and the related forecast horizon
(one of the predictability definitions) [3, 6]- The time series are representative of
different dynamics: periodic, guasi periodic, chaotic, complex and stochastic [3, 12,
15, 22]. There is not a clear relation between the Lyapunov exponent and the time
series dynamics, then using only one parameter does not provide enough information
' order to extract knowledge about the predictability and its behavior.
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Fig. 1. Behavior of the Lyapunov exponent for the experimenta} set of time series

The Figure 2 shows the five clusters identificd with the technique of
Multidimensiona! Scaling, the clusters were formed by the similarity between the
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time series due to the set of parameters that characterize their dynamics. The
Recurrence Plots of the fime series were associated to the Multidimensional Scaling
Plot, the Recurrence Plots were generated with a codification of gray colors, more
analysis follows below, but in Figure 2 a general view of the distribution of patterns is
visualized. Some time series are not associated with a particular cluster, these time
series have basic patterns too, but they were not study in the present work.

In order to identify the basic structural patterns that are present in the dlffelent
clusters of time series, a comparison between the Recurrence Plots for the same
cluster was first done, once a basic pattern was identified, a second comparison was
done with the Recutrence Plots of ihe rest of time series that do not belong to the
cluster of origin. In order to easily visualize the patterns a pleplocessmg was made in
the Recurrence Plots images, each one was converted as an 8-bit image and then a
binary threshold operation was applied, in this way the main str uctural features of
each pattern were high lined [23].

The Figure 3 shows an example of the comparison between the Recurrence Plots of
two time series that belong to the cluster 3, the similarity between the patteras of their
Recurrence Piots is represented by the basic pattern in form of a dotted “L” inside the
circles.

The Figures 4 to &, show the basic structural patterns identified by the combination
of the MDS analysis and the Recurrence Plots.

The time series in cluster 1, have a mix of patterns Pla and P1b at different levels
in their corresponding Recurrence Plots. The patterns that are show in Figure 4
corresponds to the ASCHTXT time series for the pattern Pla and the Cantor time
series for the pattern P1b.

In the cluster 3, the time series: Al, Lovaina and Laser have a mix of the P3a and
P3b patterns in their Recurrence Plots, and the time series Lorenz and D1 have only
the P3b pattern, The patterns in the Figure 6 corresponds to the Lovaina time series
for the pattern P3a and Lorenz time series for the pattern P3b.

In the cluster 4, the time series: Qperiodic 2 and Rossler, have the pattern P4a; and
the time sertes: ECG and Human DNA, have the pattern P4b in their Recurrence
Plots. The patterns in the Figure 7 corresponds to the Rossler time series for the
pattern P4a and Human DNA time series for the pattern P4b.
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Fig. 3. Example of the comparison between two time series that belong to cluster 3 with their
Recurrence Plots

: " Fig. 4. Pattern P1a to the left side and pattern P1b to the right side, the cluster 1 formed by the
“ time series: Plasma, SP500, ASCIITXT, Primes, EEG, White Noise, Cantor, Logistic, Henon
and lkeda have these patterns
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Fig. 7. Pattern P4a to the left side and pattern P4b to the right side
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Fig. 8. Pattern P3, in the cluster 5 the time series: Sine and Vandespol have this pattern in their
Recurrence Plots. The pattern corresponds to the Sine time series

5 Conclusions

The application of Multidimensional Scaling in search of hidden patterns inside a ¢
of time series, and Recurrence Plots in search of hidden patterns inside each time
series allowed the identification of refations between the clustering of time series by
their similarity with respect to the predictability, expressed through a set of
parameters that characterize the time series, and the time series structure visualized
with the Recusrrence Plots. These relations of similar predictability are represented by
basic structura! patterns identified as: Pia, P1b, P2, P3a, P3b, P4a, P4b and P5; the
relations between predictability and structure are resumed in the Table 2.

Table 2. Structure-Predictability Relations found in the similarity clusters.

T(iir:{g;lfi)is Structure-Predictability Relation
1 Time series have a mix of two basic patterns
2 and 3 Time series have only one basic pattern
3 Time series have one or more basic patterns
4 Time series have different basic patterns

The relations show the existence of basic dynamics for the different phenomena
represented by the time series, these dynamics are expressed as structural patterns.
Also, the diversity of relations show that a richness of dynamic behaviors are related
with the predictability of time series. In the future with an increment of the number
and variety of time series, a better definition of the clusters will be achieved and new
- relations could be discovered.
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